Kamis, 10 Juli 2014

Pemberian Bias Pada Daerah Deplesi Built In Voltage Dioda


 Pemberian Bias Pada Dioda
 
Bias diode adalah cara pemberian tegangan luar ke terminal diode. Apabila A diberi tegangan positif dan K diberi tegangan negative maka bias tersebut dikatakan bias maju (forward bias). Pada kondisi bias ini akan terjadi aliran arus dengan ketentuan beda tegangan yang diberikan ke diode atau VA-VK > Vj dan selalu positif. Sebaliknya apabila A diberi tegangan negative dan K diberi tegangan positif, arus yang mengalir (IR) jauh lebih kecil dari pada kondisi bias maju. Bias ini dinamakan bias mundur (reverse bias) pada arus maju (IF) diperlakukan baterai tegangan yang diberikan dengan IF tidak terlalu besar maupun tidak ada peningkatan IR yang cukup significant.

P-N junction
P-n junction terbentuk dengan menggabungkan semikonduktor tipe-N dan tipe-P bersamaan dalam hubungan yang sangat dekat. Istilah junction menunjuk ke bagian di mana kedua tipe semikonduktor tersebut bertemu. Dapat dilihat sebagai perbatasan antara wilayah antara blok tipe-P dan tipe-N seperti yang diperlihatkan di diagram bawah:
 
Daerah Deplesi
Daerah deplesi atau daerah transisi adalah daerah yang sangat tipis dekat sambungan antara semikonduktor tipe p dan semikonduktor tipe n pada sebuah diode. Daerah ini dapat membangkitkan pembawa muatan minoritas saat terdapat cukup energi termal untuk membangkitkan pasangan lubang-elektron. Salah satu dari pembawa muatan minoritas ini, misalnya elektron pada tipe-p, akan mengalami pengaruh dari proses penolakan elektron difusi dari tipe-n. Dengan kata lain elektron minoritas ini akan ikut tertarik ke semikonduktor
tipe-n. Gerakan pembawa muatan akibat pembangkitan termal ini lebih dikenal sebagai“drift”. Situasi akan stabil saat arus difusi sama dengan arus drift.
Pada daerah sambungan/daerah diplesi yang sangat tipis terjadi pengosongan pembawa muatan mayoritas akibat terjadinya difusi ke sisi yang lain. Hilangnya pembawa muatan mayoritas di daerah ini meninggalkan lapisan muatan positip di daerah tipe-n dan lapisan muatan negatif di daerah tipe-p.

Karakteristik Arus dan tegangan
Forward Bias
Ketika kaki katoda disambungkan dengan kutub negatif batere dan anoda disambungkan dengan kutub positif, maka dikatakan bahwa dioda sedang dibias dengan tegangan maju. Bias maju ini diperlihatkan pada gambar berikut.
Dioda dengan bias tegangan maju Dalam bias maju, kutub negatif batere akan menolak elekton-elektron bebas yang ada dalam semikonduktor tipe N, ika energi listrik yang digunakan adalah melebihi tegangan barir, maka elektron yang tertolak tersebut akan melintasi daerah deplesi dan bergabung dengan hole yang ada pada tipe P, hal ini terjadi terus menerus selama rangkaian di gambar tersebut adalah tertutup. Kondisi inilah yang menyebabkan adanya arus listrik yang mengalir dalam rangkaian.
 
Reverse Bias
Sebaliknya jika kaki katoda disambungkan dengan kutub positif batere dan anoda disambungkan dengan kutub negatif batere, maka kondisi ini disebut sebagai bias tegangan balik, seperti terlihat dalam gambar berikut.
 
Dioda dengan bias tegangan mundur Ketika dioda dibias mundur, maka tidak ada aliran arus listrik yang melewati dioda. Hal ini dikarenakan elekton bebas yang ada pada tipe N tertarik oleh kutub positif batere dan demikian juga hole pada tipe P berekombinasi dengan elektron dari batere, sehingga lapisan pengosongan menjadi semakin lebar. Dengan semakin lebarnya lapisan pengosongan ini, maka dioda tidak akan mengalirkan arus listrik. Ketika tegangan bias mundur terus diperbesar, maka pada suatu harga tegangan tertentu dioda akan rusak, karena adanya proses avalan yang menyebabkan dioda rusak secara fisik.
 
Dioda - Breakdown
Gambar 3.17 di bawah ini menunjukkan karakteristik reverse-bias dari dioda, termasuk area breakdown. Dioda-dioda yang dibuat khusus untuk bekerja pada daerah ini memiliki kemampuan untuk menstabilkan tegangan melalui disipasi daya. Pada gambar 3.17b, tegangan RL akan konstan walaupun tegangan input V diubah-ubah (> 5V). Dioda jenis ini dinamakan dioda avalanche, dioda breakdown, atau dioda Zener.

Kemampuan dioda-breakdown ini timbul karena dua mekanisme, yaitu multiplikasi avalanche dan efek Zener (telah diterangkan sebelumnya).

Efek Zener terjadi pada saat medan di sekitar junction mendekati nilai 2 x 107 V/m. Medan sebesar ini terjadi pada tegangan di bawah 6 V pada semikonduktor ter-doping berat.

Nama dioda Zener lebih umum digunakan untuk dioda-dioda-breakdown, walaupun tegangan operasinya tinggi. Dioda silikon yang beroperasi pada breakdown avalance mampu mempertahankan tegangan dari beberapa volt hingga ratusan volt, dengan daya sekitar 50 W.

Karakteristik Temperatur. Sensitivitas dioda Zener terhadap suhu merupakan hal yang menarik. Koefisien temperatur dioda zener dinyatakan dalam prosentase perubahan tegangan per derajat celsius perubahan suhu. Koefisien bisa bernilai positif maupun negatif dengan nilai sekitar + 0,1 persen/°C.

Di daerah zener murni (di bawah 6 V) koefisien bernilai negatif, karena kenaikan suhu akan meningkatkan energi elektron valensi, sehingga lebih mudah lepas dari ikatan. Jadi di daerah ini, semakin tinggi suhu, tegangan breakdown akan semakin rendah.

Di daerah avalanche (tegangan operasi tinggi, > 6V) , kenaikan suhu akan meningkatkan vibrasi atom yang berarti akan meningkatkan peluang terjadinya tumbukan antara partikel intrinsik dengan atom. Hal ini memperkecil peluang partikel intrinsik untuk menembus junction. Berarti, tegangan breakdown semakin tinggi jika suhu dinaikkan (koefisien positif).


Resistansi Dinamis dan Kapasitansi. Jika gradien-resiprokal DVZ/DIZ  adalah resistansi dinamis, maka perubahan arus sebesar DIZ pada dioda akan menghasilkan perubahan tegangan sebesar DVZ = r DIZ. Idealnya, r = 0 (sehingga garis pada area breakdown benar-benar vertikal).
Nilai minimum r pada dioda-breakdown adalah beberapa ohm saja. Namun untuk VZ di bawah 6 V atau di atas 10 V serta arus yang cukup kecil (~ 1 mA), r dapat memiliki nilai beberapa ratus ohm.

Sejumlah produsen dioda menentukan nilai arus minimum IZK (gambar 3.17a) yang harus diperhatikan. Di bawah arus minimum ini, resistansi dinamis menjadi besar dan efek regulasi tegangan akan memburuk.

Kapasitansi pada dioda-breakdown adalah kapasitansi transisi. Karena CT proporsional dengan luas penampang dioda, dioda avalanche daya tinggi memiliki kapasitansi yang sangat besar, karena penampangnya yang besar. Nilai umum untuk CT adalah antara 10 hingga 10.000 pF.



Dioda-dioda referensi lain. Dioda zener yang tersedia di pasaran memiliki tegangan operasi hingga 2 V. Untuk menstabilkan tegangan di bawah 2 V, bisa digunakan dioda biasa dengan bias maju. Hal ini bisa dilakukan mengingat karakteristik bias maju dioda biasa hampir sama dengan karakteristik reverse bias dioda zener, hanya berbeda pada nilai tegangan breakdown-nya (lihat grafik karakteristik dioda).

Beberapa dioda dapat dihubungkan secara serial untuk meregulasi tegangan yang lebih tinggi.

Tunnel Diode
Dioda p-n junction yang telah dibahas sebelumnya memiliki konsentrasi ketidakmurnian 1 banding 108. Dengan doping sebanyak ini, depletion layer yang menimbulkan potential barrier pada junction, memiliki lebar dalam ukuran mikron. Potential barrier menahan aliran arus carrier antar kedua sisi junction. Jika konsentrasi ketidakmurnian bahan dioda sangat tinggi, misalnya 1 banding 103 (sebanding dengan kerapatan 1019 cm-3), karakteristik dioda akan berubah total. Dioda semacam ini pertama kali diperkenalkan tahun 1958 oleh Esaki, yang memberikan penjelasan teoritik yang benar mengenai karakteristik volt-amper-nya.

Fenomena Tunneling. Lebar junction barrier berbanding terbalik terhadap akar konsentrasi ketidakmurnian, sehingga lebar junction barrier pada tunnel diode akan tereduksi hingga nilainya kurang dari 100 Å (10-6 cm). Ketebalan ini hanya sekitar seperlimapuluh panjang gelombang cahanya tampak.
Telah diketahui bahwa satu partikel harus paling tidak harus memiliki energi sebesar potential-energy barrier untuk berpindah dari satu sisi dioda ke sisi lainnya. Namun, jika barrier-nya demikian tipis (seperti pada dioda Esaki), persamaan Schrödinger mengindikasikan adanya peluang besar bagi elektron untuk menembus barrier. Perilaku mekanika-kuantum ini dinamakan tunneling (terobosan / terowongan), sehingga dioda yang dibuat dengan ketidakmurnian-tinggi dinamakan dioda tunnel. Karakteristik volt-amper dioda tunnel dapat dilihat pada gambar berikut.

Karakteristik dioda tunnel. Dari gambar di atas terlihat bahwa dioda-tunnel adalah konduktor yang sempurna jika diberi bias mundur. Demikian juga untuk bias maju dengan nilai tegangan yang kecil (hingga 50 mV untuk Ge), resistansinya relatif kecil (sekitar 5 ohm). Pada arus puncak Ip yang berhubungan dengan tegangan Vp, gradien bernilai nol. Jika V sedikit lebih besar dari Vp, arus mengecil, konduktansi dinamik g = dI/dV bernilai negatif. Dioda-tunnel memperlihatkan karakteristik resistansi negatif antara arus puncak Ip dan nilai minimum IV, yang dinamakan arus lembah (valley current). Pada tegangan lembah VV dimana I = IV, konduktansi kembali bernilai 0, dan di atas titik ini, resistansi kembali dan tetap bernilai positif. Pada titik yang dinamakan peak forward voltage, VF, arus kembali mencapai nilai IP. Jika tegangan diperbesar, arus akan melewati nilai IP.

Untuk arus dengan nilai antara IV dan IP, kurva memiliki tiga nilai tegangan, karena satu nilai arus dalam area ini dapat dihasilkan oleh tiga macam tegangan. Karakteristik seperti ini membuat dioda-tunnel menjadi sangat berguna pada rangkaian digital.

Model arus-lemah (small-signal model) dioda-tunnel yang beroperasi pada area resistansi-negatif ditunjukkan pada gambar 3.19b di atas. Resistansi negatif –Rn memiliki nilai minimum pada titik perubahan arus antara IP dan IV. Induktansi serial Ls tergantung pada panjang kawat penghantar dan bentuk geometri paket dipol. Kapasitansi junction, C, tergantung pada bvias dan biasanya diukur pada titik lembah. Nilai umum untuk parameter-parameter dioda-tunnel ini pada arus puncak IP = 10 mA adalah –Rn = -30 W, Rs = 1 W, Ls = 5 nH, dan C = 20 pF.

Satu aplikasi yang menarik dari dioda tunnel adalah sebagai saklar kecepatan sangat tinggi. Karena proses terobosan (tunneling) terjadi dengan kecepatan cahaya, respon transien hanya dibatasi oleh kapasitansi shunt (kapasitansi junction dan perkabelan) dan arus pengendali puncak. Waktu switching dalam order nanodetik hingga 50 ps dapat diperoleh melalui dioda ini.

Aplikasi ke dua dari dioda tunnel adalah sebagai osilator frekuensi tinggi (microwave).

Dioda tunnel komersial biasanya terbuat dari germanium atau galium arsenide.

Sulit untuk membuat dioda-tunnel silikon dengan rasio Ip/IV yang tinggi. Tabel 3.1 di atas menununjukkan beberapa karakteristik penting dari dioda jenis ini. Perhatikan bahwa galium arsenide memiliki rasio Ip/IV tertinggi dan selisih VFVP tertinggi (sekitar 1 V), dibandingkan dengan germanium (sekitar 0,45 V). Arus puncak IP ditentukan oleh konsentrasi ketidakmurnian (resistivitas) dan area junction. Untuk aplikasi komputer, sering digunakan dioda dengan IP antara 1 hingga 100 mA. Titik puncak (VP, IP), yang berada dalam area tunneling, tidak terlalu sensitif terhadap temperatur. Namun, titik lembah (VV, IV) yang dipengaruhi oleh arus injeksi, cukup sensitif terhadap temperatur.

Kelebihan yang dimiliki oleh dioda tunnel adalah murah, noise rendah, sederhana, berkecepatan tinggi, imun terhadap lingkungan, dan berdaya rendah.

Kelemahan dioda-tunnel adalah selisih tegangan-keluaran rendah dan hanya merupakan komponen-dua-terminal. Yang terakhir ini menyebabkan tidak ada isolasi input-output, sehingga menimbulkan kesulitan dalam disain rangkaian.

Photodioda semikonduktor
Jika junction  p-n dengan bias mundur disinari, terjadi perubahan arus yang hampir linier terhadap flux cahaya. Gejala ini dimanfaatkan pada photodioda semikonduktor. Komponen ini terdiri atas junction p-n yang dibuat dalam plastik transparan. Radiasi hanya bisa diberikan pada satu permukaan junction. Sisi yang lain biasanya dicat hitam atau ditutupi lempengan logam. Komponen ini sangat kecil dengan order ukuran sepersepuluh inci.
Karakteristik Volt-Amper. Jika photodioda mendapat tegangan balik dengan nilai sepersepuluhan volt, akan terjadi arus yang hampir konstan (tidak tergantung pada besarnya bias mundur).

Arus "gelap" (dark current, lihat gambar) berhubungan dengan arus saturasi mundur, karena pembentukan carrier minoritas secara termal. Jika cahaya dijatuhkan pada permukaan, terbentuk pasangan carrier, yang kemudian akan berdifusi ke junction dan menyeberangi junction sehingga menimbulkan arus.

Arus saturasi mundur I0 pada dioda p-n proporsional terhadap konsentrasi carrier minoritas pno dan nno. Jika junction disinari, muncul sejumlah pasangan hole-elektron baru, proporsional terhadap jumlah foton. Dengan demikian dengan bias mundur yang besar akan terbentuk arus I = Io + Is,  dengan Is adalah arus short-circuit yang proporsional terhadap intensitas cahaya. 

Sensitivitas terhadap Posisi Iluminasi.  Arus pada photodioda semikonduktor terbias mundur bergantung pada difusi carrier minoritas di junction. Jika radiasi difokuskan pada satu titik kecil yang jauh dari junction, carrier minoritas terinjeksi bisa melakukan rekombinasi sebelum berdifusi pada junction. Dengan demikian, arus yang mengalir menjadi lebih kecil dibandingkan kalau peristiwa ini terjadi pada posisi yang lebih dekat dengan junction. Arus pada photodioda merupakan fungsi jarak  terhadap junction, seperti ditunjukkan oleh gambar 3.22 di bawah ini. Kurva pada gambar bersifat asimetris, karena perbedaan panjang difusi carrier minoritas di sisi p dan n.

Tidak ada komentar:

Posting Komentar